
Modular Arithmetic 

• Several important cryptosystems make use 

of modular arithmetic. This is when the 

answer to a calculation is always in the 

range 0 – m where m is the modulus. 

• To calculate the value of n mod m, you take 

away as many multiples of m as possible 

until you are left with an answer between 0 

and m. 



 If n is a negative number then you add as 

many multiples of m as necessary to get an 

answer in the range 0 – m. 

  

 Examples 

 17 mod 5 = 2  7 mod 11 = 7 

 20 mod 3 = 2  11 mod 11 = 0 

 -3 mod 11 = 8  -1 mod 11 = 10 

 25 mod 5 = 0  -11 mod 11 = 0 



• Two numbers a and b are said to be 

“congruent modulo n” if 

  (a mod n) = (b mod n)  a ≡ b(mod n) 

• The difference between a and b will be a 

multiple of n 

     So  a-b = kn for some value of k 

E.g: 4 9  1419  -1   -6 mod 5 

73  4(mod 23); 21  -9(mod 10) 

If a  0 (mod n), then n|a. 



Properties of Congruences 

1. a  b (mod n) if n|(a-b) 

2. a  b (mod n) implies b  a (mod n) 

3. a  b (mod n) and b  c (mod n) imply a  c (mod n)  

 

Proof of 1. 

If  n|(a-b), then (a-b) = kn for some k. Thus, we can write 

a = b + kn. Therefore, 

 (a mod n) = (remainder when b + kn is divided by n) = 

(remainder when b is divided by n) = (b mod n). 

 



Examples 

23  8 (mod 5) because 23 -8 =15 = 5x3 

 -11  5 (mod 8) because -11-5 =-16 = 8x(-2) 

81  0 (mod 27) because 81-0=81 = 27x3 

 



Properties of Modular Arithmetic 
1. [(a mod n) + (b mod n)] mod n = (a + b) mod n 

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n 

3. [(a mod n) x (b mod n)] mod n = (a x b) mod n 

Proof of 1. 

Let (a mod n) = Ra and (b mod n) = Rb. Then, we can write 

a = Ra + jn for some integer j and b = Rb + kn for some integer k. 

(a + b) mod n = (Ra + jn + Rb + kn) mod n 

            = [Ra + Rb + (k + j) n] mod n 

            = (Ra + Rb) mod n 

            = [(a mod n) + (b mod n)] mod n  

 



Examples 

11 mod 8 = 3; 15 mod 8 = 7 

[(11 mod 8 ) + (15 mod 8)] mod 8 = 10 mod 8 = 2 

(11 + 15) mod 8 = 26 mod 8 = 2 

[(11 mod 8 ) - (15 mod 8)] mod 8 = -4 mod 8 = 4 

(11 - 15) mod 8 = -4 mod 8 = 4 

[(11 mod 8 ) x (15 mod 8)]  mod 8= 21 mod 8 = 5 

(11 x 15) mod 8 = 165 mod 8 = 5 

 

 



Exponentiation 

• Exponentiation is done by repeated 

multiplication, as in ordinary arithmetic. 

 7

2

4 2 2 2

7

(11 mod13)

11 121 4(mod13)

11 (11 ) 4 3(mod13)

11 11 4 3 132 2(mod13)

To find dothe followings

 

 

    



Sage algorithm for modular exponentiation 

that computes xn mod m 

def exp(x,n,m):   

 y=1; u=x % m 

 while (n >0): 

  if ((n % 2)=1): 

    y=(y*u) % m; 

  if (n > 0): 

    n=floor(n / 2); 

  u=(u*u) % m 

Output y 



 A good thing about modular arithmetic is 

that the numbers you are working with will 

be kept relatively small.  At each stage of an 

algorithm, the mod function should be 

applied. 

 Thus to multiply 39 * 15 mod 11 we first 

take mods to get 

 39 mod 11 = 6 and 15 mod 11= 4 

The multiplication required is now 

 6*4 mod 11 = 24 mod 11 = 2 



Modular Division 

What is 5 ÷ 3 mod 11? 

We need to multiply 5 by the inverse of 3 mod 11 

When you multiply a number by its inverse, the answer is 

1.  

Thus the inverse of 2 is ½  since 2* ½  = 1 

The inverse of 3 mod 11 is 4 since 3*4=1 mod 11 

Thus 5 ÷ 3 mod 11 = 5*4 mod 11 = 9 mod 11 

   



Euclidean algorithm 

gcd(a,b) = gcd(b, b mod a) 

int Euclid(int a, int b) { 

 if (b == 0) return a; 

  else return Euclid(b, b % a) 

}  



Properties of Modular Arithmetic 

Define the set Zn as the set of nonnegative 

integers less than n: 

 

 

This set is referred to as the set of residues, or 

residue classes (mod n). That is, each 

integer in Zn represents a residue class. 

{0,1,..., ( 1)}nZ n 



Properties of Modular Arithmetic 

We can label the residue classes (mod n) as: 

[0],[1],[2],...,[n-1], where 

[r] = {a: a is an integer, a ≡ r (mod n)}. 

E.g.: The residue classes (mod 4) are 

[0] = {..., -16,-12,-8,-4,0,4,8,12,16, ...} 

[1] = {..., -15,-11,-7,-3,1,5,9,13,17, ...} 

[2] = {..., -14,-10,-6,-2,2,6,10,14,18, ...} 

[3] = {..., -13,-9,-5,-1,3,7,11,15,19, ...} 

 



Properties of Modular Arithmetic 

Property Expression 

Cummitative  Laws (w + x) mod n = (x + w) mod n 

(w x x) mod n = (x x w) mod n 

Associative Laws [(w + x) + y] mod n = [w + (x + y)] mod n 

[(w x x) x y] mod n = [w x (x x y)] mod n 

Distributive Law [w x (x + y)] mod n = [(w x x) + (w x y)] mod n 

Identities (0 + w) mod n = w mod n 

(1 x w) mod n =  w mod n  

Additive Inverse (-w) For each w  Zn, there exists a z such that w + z ≡ 0 mod n 



Modular Arithmetic 

• A Multiplication Table in Zn: Summary 

– The numbers that have inverses in Zn are 

relatively prime to n 

• That is: gcd(x, n) = 1 

– The numbers that do NOT have inverses in Zn 

have common prime factors with n 

• That is: gcd(x, n) > 1 

 

 



Modular Arithmetic 

• A Multiplication Table in Zn: Summary 

– The results have implications for division: 

• Some divisions have no answers 

– 3 * x = 2 mod 6 has no solutions => 2/3 has no equivalent 
in Z6 

• Some division have multiple answers 

– 2 * 2 = 4 mod 6 => 4/2 = 2 mod 6 

– 2 * 5 = 4 mod 6 => 4/2 = 5 mod 6 

• Only numbers that are relatively prime to n will be 

uniquely divisible by all elements of Zn 



Modular Arithmetic 

• A Multiplication Table in Zn: Summary 

– The results have implications for division: 

• Zero divisors exist in some mods: 

• 3 * 2 = 0 mod 6 => 0/3 = 2 and 0/2 = 3 in mod 6 

• 3 * 6 = 0 mod 9 => 0/3 = 6 and 0/6 = 3 in mod 9 

 

 



Modular Arithmetic 

• Finding Inverses in Zn 

– The numbers that have inverses in Zn are 
relatively prime to n 

– We can use the Euclidean Algorithm to see if a 
given “x” is relatively prime to “n”; then we 
know that an inverse does exist. 

– How can we find the inverse without looking at 
all the remainders?  A problem for large n. 

 



Modular Arithmetic 

• Finding Inverses in Zn 

– The numbers that have inverses in Zn are 
relatively prime to n 

– We can use the Euclidean Algorithm to see if a 
given “x” is relatively prime to “n”; then we 
know that an inverse does exist. 

– How can we find the inverse without looking at 
all the remainders?  A problem for large n. 

 



Modular Arithmetic 

• Finding Inverses in Zn 

– What is the inverse of 15 in mod 26? 

– First use the Euclidean Algorithm to determine 
if 15 and 26 are relatively prime 

• 26  = 1 * 15  + 11 

• 15  = 1 * 11  + 4 

• 11  = 2 * 4   + 3 

• 4  =  1 * 3  + 1 

• 3  = 3 * 1  + 0 

 

Then gcd (26, 15) = 1 



Modular Arithmetic 

• Finding Inverses in Zn 

– What is the inverse of 15 in mod 26?  Now we 
now they are relatively prime – so an inverse 
must exist. 

– We can use the algorithm to work backward to 
create 1 (the gcd(26, 15)) as a linear 
combination of 26 and 15: 

• 1 = x * 26 + y * 15 

– Why would we want to do this? 

 



Modular Arithmetic 

• Finding Inverses in Zn 

– Convert 1 = x * 26 + y * 15 to mod 26 and we 

get: 

– 1 mod 26  (y * 15) mod 26 

– Then if we find y we find the inverse of 15 in 

mod 26. 

– So we start from 1 and work backward… 

 



Modular Arithmetic 

• 26  = 1 * 15  + 11  => 11 = 26 – (1*15)  

• 15  = 1 * 11  + 4   => 4 = 15 – (1*11)   

• 11  = 2 * 4   + 3  => 3 = 11 – (2*4) 

• 4  =  1 * 3  + 1   => 1 = 4 – (1*3) 

 Step 1)  1 = 4 – (1 * 3) = 4 – 3 

Step 2)  1 = 4 – (11 – (2 * 4)) = 3 * 4 - 11 

Step 3)  1 = 3 * (15 – 11) – 11 = 3 * 15 – 4 * 11 

Step 4)  1 = 3 * 15 – 4(26 – (1*15)  

Step 5 ) 1 = 7 * 15 – 4 * 26 = 105 – 104 >>check 



Modular Arithmetic 

• Finding Inverses in Zn 

– So, what is the inverse of 15 in mod 26?   

– 1 = 7 * 15 – 4 * 26 converts to  

– 1  7 * 15 mod 26 

–  7 is the inverse of 15 in mod 26 

– Can you use the same result to show that 11 is 

its own inverse in mod 15? 



Modular Arithmetic 

• Using the Extended Euclidean Algorithm 

– Formalizing the backward steps we get this 

formula: 

• y0 = 0 

• y1 = 1 

• yi = (yi-2 – [yi-1 * qi-2]); i > 1 

– Related to the “Magic Box” method 

 



Modular Arithmetic 

Step 0 26 = 1 * 15 + 11 y0 = 0 

Step 1 15 = 1 * 11 + 4 y1 = 1 

Step 2 11 = 2 * 4 + 3 y2 = (y0 – (y1 * q0)) 

    = 0 – 1 * 1 mod 26 = 25 

Step 3 4 = 1 * 3 + 1 y3 = (y1 – (y2 * q1)) 

    = 1 – 25 * 1 = -24 mod 26 = 2 

Step 4 

 

3 = 3 * 1 + 0 

 

y4 = (y2 – (y3 * q2)) 

    = 25 – 2 * 2 mod 26 = 21 

Step 5 Note: qi is in red 
above 

y5 = (y3 – (y4 * q3)) 

    = 2 – 21 * 1 = -19 mod 26 = 7 



Modular Arithmetic 

• Using the Extended Euclidean Algorithm 

– y0 = 0 

– y1 = 1 

– yi = (yi-2 – [yi-1 * qi-2]); i > 1 

• Try it for… 

– 13 mod 22 

– 17 mod 97 

 

 



Modular Arithmetic 

• Using the Extended Euclidean Algorithm 

– 22 = 1 * 13 + 9    y[0]=0 

– 13 = 1 * 9 + 4    y[1]=1 

– 9 = 2 * 4 + 1     y[2]=0 - 1 * 1 mod 22 = 21 

– 4 = 4 * 1 + 0     y[3]=1 - 21 * 1 mod 22 = 2 

– Last Step :              y[4]=21 - 2 * 2 mod 22 = 17 

 

– Check: 17 * 13 = 221 = 1 mod 22 



Modular Arithmetic 

• Using the Extended Euclidean Algorithm 

– 97 = 5 * 17 + 12    x[0]=0 

– 17 = 1 * 12 + 5     x[1]=1 

– 12 = 2 * 5 + 2     x[2]=0 - 1 * 5 mod 97 = 92 

– 5 = 2 * 2 + 1      x[3]=1 - 92 * 1 mod 97 = 6 

– 2 = 2 * 1 + 0      x[4]=92 - 6 * 2 mod 97 = 80 

– Last Step:        x[5]=6 - 80 * 2 mod 97 = 40 

 

– Check: 40 * 17 = 680 = 1 mod 97 


