Modular Arithmetic

- Several important cryptosystems make use of modular arithmetic. This is when the answer to a calculation is always in the range $0-m$ where m is the modulus.
- To calculate the value of $n \bmod m$, you take away as many multiples of m as possible until you are left with an answer between 0 and m.

If n is a negative number then you add as many multiples of m as necessary to get an answer in the range $0-\mathrm{m}$.

Examples
$17 \bmod 5=2$
$7 \bmod 11=7$
$20 \bmod 3=2$
$11 \bmod 11=0$
$-3 \bmod 11=8$
$-1 \bmod 11=10$
$25 \bmod 5=0$
$-11 \bmod 11=0$

- Two numbers \boldsymbol{a} and \boldsymbol{b} are said to be "congruent modulo \boldsymbol{n} " if

$$
(a \bmod n)=(b \bmod n) \rightarrow a \equiv b(\bmod n)
$$

- The difference between \boldsymbol{a} and \boldsymbol{b} will be a multiple of \boldsymbol{n}

So $\boldsymbol{a} \boldsymbol{-} \boldsymbol{b}=\boldsymbol{k} \boldsymbol{n}$ for some value of \boldsymbol{k}
E.g: $4 \equiv 9 \equiv 14 \equiv 19 \equiv-1 \equiv-6 \bmod 5$
$73 \equiv 4(\bmod 23) ; 21 \equiv-9(\bmod 10)$
If $a \equiv 0(\bmod n)$, then $n \mid a$.

Properties of Congruences

1. $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{n})$ if $n \mid(a-b)$
2. $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{n})$ implies $\boldsymbol{b} \equiv \boldsymbol{a}(\bmod \boldsymbol{n})$
3. $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n) i m p l y a \equiv c(\bmod n)$

Proof of 1.
If $n \mid(a-b)$, then $(a-b)=k n$ for some k. Thus, we can write $a=b+k n$. Therefore,
$(a \bmod n)=($ remainder when $b+k n$ is divided by $n)=$ $($ remainder when b is divided by $n)=(b \bmod n)$.

Examples

$23 \equiv 8(\bmod 5)$ because $23-8=15=5 \times 3$
$-11 \equiv 5(\bmod 8)$ because $-11-5=-16=8 \times(-2)$
$81 \equiv 0(\bmod 27)$ because $81-0=81=27 \times 3$

Properties of Modular Arithmetic

1. $[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
2. $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
3. $[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n$

Proof of 1 .
Let $(a \bmod n)=R a$ and $(b \bmod n)=R b$. Then, we can write $a=R a+j n$ for some integer j and $b=R b+k n$ for some integer k.
$(a+b) \bmod n=(R a+j n+R b+k n) \bmod n$

$$
\begin{aligned}
& =[R a+R b+(k+j) n] \bmod n \\
& =(R a+R b) \bmod n \\
& =[(a \bmod n)+(b \bmod n)] \bmod n
\end{aligned}
$$

Examples

$11 \bmod 8=3 ; 15 \bmod 8=7$
$[(11 \bmod 8)+(15 \bmod 8)] \bmod 8=10 \bmod 8=2$
$(11+15) \bmod 8=26 \bmod 8=2$
$[(11 \bmod 8)-(15 \bmod 8)] \bmod 8=-4 \bmod 8=4$
$(11-15) \bmod 8=-4 \bmod 8=4$
$[(11 \bmod 8) \times(15 \bmod 8)] \bmod 8=21 \bmod 8=5$
$(11 \times 15) \bmod 8=165 \bmod 8=5$

Exponentiation

- Exponentiation is done by repeated multiplication, as in ordinary arithmetic.

$$
\begin{aligned}
& \text { To find }\left(11^{7} \bmod 13\right) \text { do the followings } \\
& 11^{2}=121 \equiv 4(\bmod 13) \\
& 11^{4}\left(11^{2}\right)^{2} \equiv 4^{2} \equiv 3(\bmod 13) \\
& 11^{7} \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2(\bmod 13)
\end{aligned}
$$

Sage algorithm for modular exponentiation that computes $x^{n} \bmod m$ def $\exp (\mathrm{x}, \mathrm{n}, \mathrm{m})$:

$$
y=1 ; u=x \% m
$$

$$
\text { while (} \mathrm{n}>0 \text {): }
$$

$$
\text { if }((n \% 2)=1):
$$

$$
y=(y * u) \% m
$$

$$
\text { if }(\mathrm{n}>0) \text { : }
$$

$$
n=\text { floor }(n / 2) \text {; }
$$

$$
u=(u * u) \% m
$$

Output y

A good thing about modular arithmetic is that the numbers you are working with will be kept relatively small. At each stage of an algorithm, the mod function should be applied.
Thus to multiply $39 * 15 \bmod 11$ we first take mods to get

$$
39 \bmod 11=6 \text { and } 15 \bmod 11=4
$$

The multiplication required is now
$6 * 4 \bmod 11=24 \bmod 11=2$

Modular Division

What is $5 \div 3 \bmod 11$?
We need to multiply 5 by the inverse of $3 \bmod 11$
When you multiply a number by its inverse, the answer is 1.

Thus the inverse of 2 is $1 / 2$ since $2 * 1 / 2=1$
The inverse of $3 \bmod 11$ is 4 since $3 * 4=1 \bmod 11$
Thus $5 \div 3 \bmod 11=5 * 4 \bmod 11=9 \bmod 11$

Euclidean algorithm

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, b \bmod a)$
int Euclid(int a, int b) \{

$$
\begin{aligned}
& \text { if }(b==0) \text { return } a ; \\
& \text { else return Euclid(b, b } \% \text { a) }
\end{aligned}
$$

\}

Properties of Modular Arithmetic

Define the set Z_{n} as the set of nonnegative integers less than n :

$$
Z_{n}=\{0,1, \ldots,(n-1)\}
$$

This set is referred to as the set of residues, or residue classes $(\bmod n)$. That is, each integer in Zn represents a residue class.

Properties of Modular Arithmetic

We can label the residue classes $(\bmod n)$ as:
[0],[1],[2],...,[n-1], where
$[r]=\{a: a$ is an integer, $a \equiv r(\bmod n)\}$.
E.g.: The residue classes $(\bmod 4)$ are
$[0]=\{\ldots,-16,-12,-8,-4,0,4,8,12,16, \ldots\}$
$[1]=\{\ldots,-15,-11,-7,-3,1,5,9,13,17, \ldots\}$
$[2]=\{\ldots,-14,-10,-6,-2,2,6,10,14,18, \ldots\}$
$[3]=\{\ldots,-13,-9,-5,-1,3,7,11,15,19, \ldots\}$

Properties of Modular Arithmetic

Property	Expression
Cummitative Laws	$(w+x) \bmod n=(x+w) \bmod n$ $(w \mathrm{x} x) \bmod n=(x \mathrm{x} w) \bmod n$
Associative Laws	$\begin{aligned} & {[(w+x)+y] \bmod n=[w+(x+y)] \bmod n} \\ & {[(w \times x) \times y] \bmod n=[w \times(x \times y)] \bmod n} \end{aligned}$
Distributive Law	$[w \mathrm{x}(x+y)] \bmod n=[(w \mathrm{x} x)+(w \mathrm{x} y)] \bmod n$
Identities	$\begin{aligned} & (0+w) \bmod n=w \bmod n \\ & (1 \times w) \bmod n=w \bmod n \end{aligned}$
Additive Inverse (-w)	For each $\mathrm{w} \square Z_{n}$, there exists a z such that $w+z \equiv 0 \bmod n$

Modular Arithmetic

- A Multiplication Table in Z_{n} : Summary
- The numbers that have inverses in Z_{n} are relatively prime to n
- That is: $\operatorname{gcd}(\mathrm{x}, \mathrm{n})=1$
- The numbers that do NOT have inverses in Z_{n} have common prime factors with n
- That is: $\operatorname{gcd}(\mathrm{x}, \mathrm{n})>1$

Modular Arithmetic

- A Multiplication Table in Z_{n} : Summary
- The results have implications for division:
- Some divisions have no answers
$-3 * x=2 \bmod 6$ has no solutions $\Rightarrow 2 / 3$ has no equivalent in Z_{6}
- Some division have multiple answers

$$
\begin{aligned}
& -2 * 2=4 \bmod 6 \Rightarrow 4 / 2=2 \bmod 6 \\
& -2 * 5=4 \bmod 6 \Rightarrow 4 / 2=5 \bmod 6
\end{aligned}
$$

- Only numbers that are relatively prime to n will be uniquely divisible by all elements of Z_{n}

Modular Arithmetic

- A Multiplication Table in Z_{n} : Summary
- The results have implications for division:
- Zero divisors exist in some mods:
- $3 * 2=0 \bmod 6=>0 / 3=2$ and $0 / 2=3$ in $\bmod 6$
- $3 * 6=0 \bmod 9=>0 / 3=6$ and $0 / 6=3$ in $\bmod 9$

Modular Arithmetic

- Finding Inverses in Z_{n}
- The numbers that have inverses in Z_{n} are relatively prime to n
- We can use the Euclidean Algorithm to see if a given " x " is relatively prime to " n "; then we know that an inverse does exist.
- How can we find the inverse without looking at all the remainders? A problem for large n.

Modular Arithmetic

- Finding Inverses in Z_{n}
- The numbers that have inverses in Z_{n} are relatively prime to n
- We can use the Euclidean Algorithm to see if a given " x " is relatively prime to " n "; then we know that an inverse does exist.
- How can we find the inverse without looking at all the remainders? A problem for large n.

Modular Arithmetic

- Finding Inverses in Z_{n}
- What is the inverse of 15 in mod 26 ?
- First use the Euclidean Algorithm to determine if 15 and 26 are relatively prime
- $26=1$ * $15+11$
- $15=1^{*} 11+4$
- $11=2 * 4+3$
$-4=1 * 3+1$
$\cdot 3=3 * 1+0$
Then $\operatorname{gcd}(26,15)=1$

Modular Arithmetic

- Finding Inverses in Z_{n}
- What is the inverse of 15 in mod 26? Now we now they are relatively prime - so an inverse must exist.
- We can use the algorithm to work backward to create 1 (the $\operatorname{gcd}(26,15)$) as a linear combination of 26 and 15 :
- $1=x * 26+y * 15$
- Why would we want to do this?

Modular Arithmetic

- Finding Inverses in Z_{n}
- Convert $1=x * 26+y * 15$ to $\bmod 26$ and we get:
$-1 \bmod 26$ (ㄷ) $\left(y^{*} 15\right) \bmod 26$
- Then if we find y we find the inverse of 15 in mod 26.
- So we start from 1 and work backward...

Modular Arithmetic

- $26=1 * 15+11 \Rightarrow 11=26-(1 * 15)$
- $15=1 * 11+4 \quad \Rightarrow 4=15-(1 * 11)$
- $11=2 * 4+3 \Rightarrow 3=11-(2 * 4)$
- $4=1 * 3+1 \quad \Rightarrow 1=4-(1 * 3)$

Step 1) $1=4-(1 * 3)=4-3$
Step 2) $1=4-(11-(2 * 4))=3 * 4-11$
Step 3) $1=3 *(15-11)-11=3 * 15-4 * 11$
Step 4) $1=3 * 15-4(26-(1 * 15)$
Step 5) $1=7 * 15-4 * 26=105-104 \gg$ check

Modular Arithmetic

- Finding Inverses in Z_{n}
- So, what is the inverse of 15 in $\bmod 26$?
$-1=7 * 15-4 * 26$ converts to
-1 (2) $7 * 15 \bmod 26$
- ॐ 7 is the inverse of $15 \mathrm{in} \bmod 26$
- Can you use the same result to show that 11 is its own inverse in mod 15 ?

Modular Arithmetic

- Using the Extended Euclidean Algorithm
- Formalizing the backward steps we get this formula:
- $\mathrm{y}_{0}=0$
- $\mathrm{y}_{1}=1$
- $\mathrm{y}_{\mathrm{i}}=\left(\mathrm{y}_{\mathrm{i}-2}-\left[\mathrm{y}_{\mathrm{i}-1} * \mathrm{q}_{\mathrm{i}-2}\right]\right) ; \mathrm{i}>1$
- Related to the "Magic Box" method

Modular Arithmetic

Step 0	$26=1 * 15+11$	$\mathrm{y}_{0}=0$
Step 1	$15=1 * 11+4$	$\mathrm{y}_{1}=1$
Step 2	$11=2 * 4+3$	$\mathrm{y}_{2}=\left(\mathrm{y}_{0}-\left(\mathrm{y}_{1} * \mathrm{q}_{0}\right)\right)$ $=0-1 * 1 \bmod 26=25$
Step 3	$4=1 * 3+1$	$\mathrm{y}_{3}=\left(\mathrm{y}_{1}-\left(\mathrm{y}_{2} * \mathrm{q}_{1}\right)\right)$ $=1-25 * 1=-24 \bmod 26=2$
Step 4	$3=3 * 1+0$	$\mathrm{y}_{4}=\left(\mathrm{y}_{2}-\left(\mathrm{y}_{3} * \mathrm{q}_{2}\right)\right)$ $=25-2 * 2 \bmod 26=21$
Step 5	Note: q_{i} is in red above	$\mathrm{y}_{5}=\left(\mathrm{y}_{3}-\left(\mathrm{y}_{4} * \mathrm{q}_{3}\right)\right)$ $=2-21 * 1=-19 \bmod 26=7$

Modular Arithmetic

- Using the Extended Euclidean Algorithm
$-y_{0}=0$
$-y_{1}=1$
$-\mathrm{y}_{\mathrm{i}}=\left(\mathrm{y}_{\mathrm{i}-2}-\left[\mathrm{y}_{\mathrm{i}-1} * \mathrm{q}_{\mathrm{i}-2}\right]\right) ; \mathrm{i}>1$
- Try it for...
$-13 \bmod 22$
$-17 \bmod 97$

Modular Arithmetic

- Using the Extended Euclidean Algorithm
$-22=1 * 13+9 \quad y[0]=0$
$-13=1 * 9+4 \quad y[1]=1$
$-9=2 * 4+1$
$-4=4$ * $1+0$
$\mathrm{y}[2]=0-1 * 1 \bmod 22=21$
$\mathrm{y}[3]=1-21 * 1 \bmod 22=2$
- Last Step :
$y[4]=21-2 * 2 \bmod 22=17$
- Check: 17 * $13=221=1 \bmod 22$

Modular Arithmetic

- Using the Extended Euclidean Algorithm
$-97=5 * 17+12 \quad x[0]=0$
$-17=1 * 12+5 \quad x[1]=1$
$-12=2 * 5+2 \quad x[2]=0-1 * 5 \bmod 97=92$
$-5=2$ * $2+1$
$-2=2$ * $1+0$
- Last Step:

$$
\begin{aligned}
& x[3]=1-92 * 1 \bmod 97=6 \\
& x[4]=92-6 * 2 \bmod 97=80 \\
& x[5]=6-80 * 2 \bmod 97=40
\end{aligned}
$$

- Check: 40 * $17=680=1 \bmod 97$

