
Modular Arithmetic

• Several important cryptosystems make use

of modular arithmetic. This is when the

answer to a calculation is always in the

range 0 – m where m is the modulus.

• To calculate the value of n mod m, you take

away as many multiples of m as possible

until you are left with an answer between 0

and m.

 If n is a negative number then you add as

many multiples of m as necessary to get an

answer in the range 0 – m.

 Examples

 17 mod 5 = 2 7 mod 11 = 7

 20 mod 3 = 2 11 mod 11 = 0

 -3 mod 11 = 8 -1 mod 11 = 10

 25 mod 5 = 0 -11 mod 11 = 0

• Two numbers a and b are said to be

“congruent modulo n” if

 (a mod n) = (b mod n)  a ≡ b(mod n)

• The difference between a and b will be a

multiple of n

 So a-b = kn for some value of k

E.g: 4 9  1419  -1  -6 mod 5

73  4(mod 23); 21  -9(mod 10)

If a  0 (mod n), then n|a.

Properties of Congruences

1. a  b (mod n) if n|(a-b)

2. a  b (mod n) implies b  a (mod n)

3. a  b (mod n) and b  c (mod n) imply a  c (mod n)

Proof of 1.

If n|(a-b), then (a-b) = kn for some k. Thus, we can write

a = b + kn. Therefore,

 (a mod n) = (remainder when b + kn is divided by n) =

(remainder when b is divided by n) = (b mod n).

Examples

23  8 (mod 5) because 23 -8 =15 = 5x3

 -11  5 (mod 8) because -11-5 =-16 = 8x(-2)

81  0 (mod 27) because 81-0=81 = 27x3

Properties of Modular Arithmetic
1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) x (b mod n)] mod n = (a x b) mod n

Proof of 1.

Let (a mod n) = Ra and (b mod n) = Rb. Then, we can write

a = Ra + jn for some integer j and b = Rb + kn for some integer k.

(a + b) mod n = (Ra + jn + Rb + kn) mod n

 = [Ra + Rb + (k + j) n] mod n

 = (Ra + Rb) mod n

 = [(a mod n) + (b mod n)] mod n

Examples

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8= 21 mod 8 = 5

(11 x 15) mod 8 = 165 mod 8 = 5

Exponentiation

• Exponentiation is done by repeated

multiplication, as in ordinary arithmetic.

 7

2

4 2 2 2

7

(11 mod13)

11 121 4(mod13)

11 (11) 4 3(mod13)

11 11 4 3 132 2(mod13)

To find dothe followings

 

 

    

Sage algorithm for modular exponentiation

that computes xn mod m

def exp(x,n,m):

 y=1; u=x % m

 while (n >0):

 if ((n % 2)=1):

 y=(y*u) % m;

 if (n > 0):

 n=floor(n / 2);

 u=(u*u) % m

Output y

 A good thing about modular arithmetic is

that the numbers you are working with will

be kept relatively small. At each stage of an

algorithm, the mod function should be

applied.

 Thus to multiply 39 * 15 mod 11 we first

take mods to get

 39 mod 11 = 6 and 15 mod 11= 4

The multiplication required is now

 6*4 mod 11 = 24 mod 11 = 2

Modular Division

What is 5 ÷ 3 mod 11?

We need to multiply 5 by the inverse of 3 mod 11

When you multiply a number by its inverse, the answer is

1.

Thus the inverse of 2 is ½ since 2* ½ = 1

The inverse of 3 mod 11 is 4 since 3*4=1 mod 11

Thus 5 ÷ 3 mod 11 = 5*4 mod 11 = 9 mod 11

Euclidean algorithm

gcd(a,b) = gcd(b, b mod a)

int Euclid(int a, int b) {

 if (b == 0) return a;

 else return Euclid(b, b % a)

}

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative

integers less than n:

This set is referred to as the set of residues, or

residue classes (mod n). That is, each

integer in Zn represents a residue class.

{0,1,..., (1)}nZ n 

Properties of Modular Arithmetic

We can label the residue classes (mod n) as:

[0],[1],[2],...,[n-1], where

[r] = {a: a is an integer, a ≡ r (mod n)}.

E.g.: The residue classes (mod 4) are

[0] = {..., -16,-12,-8,-4,0,4,8,12,16, ...}

[1] = {..., -15,-11,-7,-3,1,5,9,13,17, ...}

[2] = {..., -14,-10,-6,-2,2,6,10,14,18, ...}

[3] = {..., -13,-9,-5,-1,3,7,11,15,19, ...}

Properties of Modular Arithmetic

Property Expression

Cummitative Laws (w + x) mod n = (x + w) mod n

(w x x) mod n = (x x w) mod n

Associative Laws [(w + x) + y] mod n = [w + (x + y)] mod n

[(w x x) x y] mod n = [w x (x x y)] mod n

Distributive Law [w x (x + y)] mod n = [(w x x) + (w x y)] mod n

Identities (0 + w) mod n = w mod n

(1 x w) mod n = w mod n

Additive Inverse (-w) For each w Zn, there exists a z such that w + z ≡ 0 mod n

Modular Arithmetic

• A Multiplication Table in Zn: Summary

– The numbers that have inverses in Zn are

relatively prime to n

• That is: gcd(x, n) = 1

– The numbers that do NOT have inverses in Zn

have common prime factors with n

• That is: gcd(x, n) > 1

Modular Arithmetic

• A Multiplication Table in Zn: Summary

– The results have implications for division:

• Some divisions have no answers

– 3 * x = 2 mod 6 has no solutions => 2/3 has no equivalent
in Z6

• Some division have multiple answers

– 2 * 2 = 4 mod 6 => 4/2 = 2 mod 6

– 2 * 5 = 4 mod 6 => 4/2 = 5 mod 6

• Only numbers that are relatively prime to n will be

uniquely divisible by all elements of Zn

Modular Arithmetic

• A Multiplication Table in Zn: Summary

– The results have implications for division:

• Zero divisors exist in some mods:

• 3 * 2 = 0 mod 6 => 0/3 = 2 and 0/2 = 3 in mod 6

• 3 * 6 = 0 mod 9 => 0/3 = 6 and 0/6 = 3 in mod 9

Modular Arithmetic

• Finding Inverses in Zn

– The numbers that have inverses in Zn are
relatively prime to n

– We can use the Euclidean Algorithm to see if a
given “x” is relatively prime to “n”; then we
know that an inverse does exist.

– How can we find the inverse without looking at
all the remainders? A problem for large n.

Modular Arithmetic

• Finding Inverses in Zn

– The numbers that have inverses in Zn are
relatively prime to n

– We can use the Euclidean Algorithm to see if a
given “x” is relatively prime to “n”; then we
know that an inverse does exist.

– How can we find the inverse without looking at
all the remainders? A problem for large n.

Modular Arithmetic

• Finding Inverses in Zn

– What is the inverse of 15 in mod 26?

– First use the Euclidean Algorithm to determine
if 15 and 26 are relatively prime

• 26 = 1 * 15 + 11

• 15 = 1 * 11 + 4

• 11 = 2 * 4 + 3

• 4 = 1 * 3 + 1

• 3 = 3 * 1 + 0

Then gcd (26, 15) = 1

Modular Arithmetic

• Finding Inverses in Zn

– What is the inverse of 15 in mod 26? Now we
now they are relatively prime – so an inverse
must exist.

– We can use the algorithm to work backward to
create 1 (the gcd(26, 15)) as a linear
combination of 26 and 15:

• 1 = x * 26 + y * 15

– Why would we want to do this?

Modular Arithmetic

• Finding Inverses in Zn

– Convert 1 = x * 26 + y * 15 to mod 26 and we

get:

– 1 mod 26  (y * 15) mod 26

– Then if we find y we find the inverse of 15 in

mod 26.

– So we start from 1 and work backward…

Modular Arithmetic

• 26 = 1 * 15 + 11 => 11 = 26 – (1*15)

• 15 = 1 * 11 + 4 => 4 = 15 – (1*11)

• 11 = 2 * 4 + 3 => 3 = 11 – (2*4)

• 4 = 1 * 3 + 1 => 1 = 4 – (1*3)

 Step 1) 1 = 4 – (1 * 3) = 4 – 3

Step 2) 1 = 4 – (11 – (2 * 4)) = 3 * 4 - 11

Step 3) 1 = 3 * (15 – 11) – 11 = 3 * 15 – 4 * 11

Step 4) 1 = 3 * 15 – 4(26 – (1*15)

Step 5) 1 = 7 * 15 – 4 * 26 = 105 – 104 >>check

Modular Arithmetic

• Finding Inverses in Zn

– So, what is the inverse of 15 in mod 26?

– 1 = 7 * 15 – 4 * 26 converts to

– 1  7 * 15 mod 26

–  7 is the inverse of 15 in mod 26

– Can you use the same result to show that 11 is

its own inverse in mod 15?

Modular Arithmetic

• Using the Extended Euclidean Algorithm

– Formalizing the backward steps we get this

formula:

• y0 = 0

• y1 = 1

• yi = (yi-2 – [yi-1 * qi-2]); i > 1

– Related to the “Magic Box” method

Modular Arithmetic

Step 0 26 = 1 * 15 + 11 y0 = 0

Step 1 15 = 1 * 11 + 4 y1 = 1

Step 2 11 = 2 * 4 + 3 y2 = (y0 – (y1 * q0))

 = 0 – 1 * 1 mod 26 = 25

Step 3 4 = 1 * 3 + 1 y3 = (y1 – (y2 * q1))

 = 1 – 25 * 1 = -24 mod 26 = 2

Step 4

3 = 3 * 1 + 0

y4 = (y2 – (y3 * q2))

 = 25 – 2 * 2 mod 26 = 21

Step 5 Note: qi is in red
above

y5 = (y3 – (y4 * q3))

 = 2 – 21 * 1 = -19 mod 26 = 7

Modular Arithmetic

• Using the Extended Euclidean Algorithm

– y0 = 0

– y1 = 1

– yi = (yi-2 – [yi-1 * qi-2]); i > 1

• Try it for…

– 13 mod 22

– 17 mod 97

Modular Arithmetic

• Using the Extended Euclidean Algorithm

– 22 = 1 * 13 + 9 y[0]=0

– 13 = 1 * 9 + 4 y[1]=1

– 9 = 2 * 4 + 1 y[2]=0 - 1 * 1 mod 22 = 21

– 4 = 4 * 1 + 0 y[3]=1 - 21 * 1 mod 22 = 2

– Last Step : y[4]=21 - 2 * 2 mod 22 = 17

– Check: 17 * 13 = 221 = 1 mod 22

Modular Arithmetic

• Using the Extended Euclidean Algorithm

– 97 = 5 * 17 + 12 x[0]=0

– 17 = 1 * 12 + 5 x[1]=1

– 12 = 2 * 5 + 2 x[2]=0 - 1 * 5 mod 97 = 92

– 5 = 2 * 2 + 1 x[3]=1 - 92 * 1 mod 97 = 6

– 2 = 2 * 1 + 0 x[4]=92 - 6 * 2 mod 97 = 80

– Last Step: x[5]=6 - 80 * 2 mod 97 = 40

– Check: 40 * 17 = 680 = 1 mod 97

